Mechanical power output during running accelerations in wild turkeys.

نویسندگان

  • Thomas J Roberts
  • Jeffrey A Scales
چکیده

We tested the hypothesis that the hindlimb muscles of wild turkeys (Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg(-1) hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg(-1) muscle during the highest accelerations. The high power outputs observed during accelerations suggest that elastic energy storage and recovery may redistribute muscle power during acceleration. Elastic mechanisms may expand the functional range of muscle contractile elements in running animals by allowing muscles to vary their mechanical function from force-producing struts during steady-speed running to power-producing motors during acceleration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjusting muscle function to demand: joint work during acceleration in wild turkeys.

We measured the net work performed at hind limb joints in running turkeys to determine the source of mechanical power for acceleration. We tested the hypothesis that net mechanical work per step increases in proportion to acceleration at all four major hind limb joints (hip, knee, ankle and tarsometatarsal-phalangeal joint). This hypothesis was based on the idea that all hind limb muscles shoul...

متن کامل

Weyand , Deborah B . Sternlight

[PDF] [Full Text] [Abstract] , January 8, 2001; 204 (15): 2717-2731. J. Exp. Biol. G. B. Gillis and A. A. Biewener activation in a hip and knee extensor of the rat (Rattus norvegicus) Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and [PDF] [Full Text] [Abstract] , May 15, 2002; 205 (10): 1485-1494. J. Exp. Biol. T. J. Roberts and J. A. Scales Mechanical ...

متن کامل

Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running.

We investigated the mechanical function of two ankle extensor muscles, the lateral gastrocnemius (LG) and peroneus longus (PL), in wild turkeys Meleagris gallopavo during steady speed running. We hypothesized that mechanical work output of the LG and PL during running parallels the demand for mechanical work on the body. The turkeys ran on level, inclined (+6 degrees, +12 degrees ) and declined...

متن کامل

The integrated function of muscles and tendons during locomotion.

The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activiti...

متن کامل

Relative shortening velocity in locomotor muscles: turkey ankle extensors operate at low V/V(max).

The force-velocity properties of skeletal muscle have an important influence on locomotor performance. All skeletal muscles produce less force the faster they shorten and typically develop maximal power at velocities of approximately 30% of maximum shortening velocity (V(max)). We used direct measurements of muscle mechanical function in two ankle extensor muscles of wild turkeys to test the hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 205 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2002